https://github.com/
ewolff/microservice-dapr

<> SWAGLAL

Example

Fach box is a container -

SWAGLAD

Feeds

*You can subscribe to feeds, blogs, podcasts etc
* Access through HTTP

e|dea: Provide a feeds of events / orders

oWAG

"updated": "2022-05-28T18:07:03.931+0000",
"orders": |
{
"id": 1,
"link": "http://swaglab.rocks:8080/order/1",
"updated": "2022-05-28T18:07:03.931+0000"

}
]

SWAGL Al

http://swaglab.rocks:8080/order/1

Subscribing to Feed

*Poll the feed (HTTP GET)

*Client decides when to process new events
o ...but very inefficient

| ots of unchanged data

oWAG

HTTP Caching

*Client GETs feed

*Server send data

+ Last-Modified header
*Client sends GET

+ If-Modified-Since header
*Server: 304 (Not modified)
...Or new data

oWAG

HTTP /

SWAGLAD

Kl

Application code

Microservices written in

Any code or framework... =G0 nede @ python NET :ﬁ > Java @ @ @

HTTP API gRPC API
Service State Publizh and Input/Output Configuration Distributed Lock Workflows Cryptography
Inwocation Management Subscribe Bindings
B) | '
dl.'.IPl' EEEE -\Q < - =

;i_. Observability ﬂ Security (¥ Resiliency

Any cloud or edge infrastructure

AVicosoft Azre HAMAZON & GoogleCloud) Alibaba Cloud kubernetes == virtualor
"¢ webservices - [—1-1 physical machines

oWAG

Dapr Local for Development

Java
application

v

Dapr
infrastruture

(Docker
container)

dapr init
Dapr listens on e.g. port 3500 -> http://localhost:3500

oWAG

Dapr: Alternative to Feed

* Might use pubsub abstraction instead of feeds

* Many implementations (Kafka, SQS, ... >40) of varying
maturity

* https://docs.dapr.io/
reference/components-reference/supported-pubsub/

oWAG

Dapr: Alternative to Feed

e Access via HTTP / sidecar or declarative

* Unified API

* Content-based routing

* Dead letter topics

* Outbox pattern

* At least once

* Consumer groups (for some implementations)...

oWAG

Dapr: Alternative to Feed

*E.g. RabbitMQ and Kafka are quite different
(e.g. backpressure, persistence)

*|I'd rather use the specific strength of a specific
technology...

e ...than seemingly be able to exchange it.
*You can argue that | did not use Dapr as intended.

oWAG

Dapr: Alternative to Postgres

* Might use state store instead of Postgres

* Many implementations (Postgres, MySQL, Cassandra
... >25) of varying maturity i.e. least common
denominator

* https://docs.dapr.io/reference/components-
reference/supported-state-stores/

oWAG

Dapr: Alternative to Postgres

e Access via HTTP / sidecar

* Unified key / value API for JSON data
*Query in alpha

* Transactional outbox with pub / sub

* https://docs.dapr.io/reference/components-
reference/supported-state-stores/

oWAG

Dapr: Alternative to Postgres

* Postgres (relational) vs. Redis (key / value in memory)
are very different wrt speed etc

*|'d rather use specific strength of a technology...
..than seemingly be able to exchange it.
*You can argue that | did not use Dapr as intended.

*Should persistence be internal to the microservice?
* CORBA services flash back

oWAG

Sidecar: http://localhost:3500/v1.0/invoke/order/method/feed

HTTP /Feed

localhost:5432

SWAGLAD

Dapr: Service Discovery

*Service discovery via sidecar
* Could have been an HTTP proxy.

* Works only for Dapr services

oWAG

Kl

index.html|

!

_ order.yaml

~

dapr run —f dapr-

/

-

_ dapr run —f dapr-other.yaml .

>~

Docker Compose

\

<

-/ SWAGLAh

Dapr on Kubernetes

Sidecar listens on e.g. port 3500 -> http://localhost:3500

SWAGLAD

Sidecar: http://localhost:3500/v1.0/invoke/order/method/feed

HTTP /Feed

Kubernetes service + DNS
postgres:5432

SWAGLAD

service-proxy.sh

service.yaml

=

dapr run =k —f
\dapr-order.yaml . \dapr run =k —f dapr-other.yaml/

4 h

infrastructure.yaml

N SWAGLAD

Kl

Kl

= =

SWAGLAD

Kl

Monitoring in the Dapr Example

* Proxy / sidecar reports metrics

* Pre-defined Grafana dashboards

oWAG

SWAGLAD

Kl

7S Grafana - Istio Service Dashboar: X -+

&« C @ localhost:3000/d/LJ_u)Avmk/istio-service-t

(%]
[§+]
f
(4]
1
(=
]
LA
J
L]
2
1]
(=
J
&)
—
4]
LA
J
1
=
)
(o's]
2
(=
1
=]
o
1
LA
(1]
o
(1]
o/
L X]

(o) 88 Istio Service Dashboard - # B @ Last 5 minutes Refresh every 10s

Service shipping.default.svc.cluster.local = Client Workload Namespace All - Client Workload All ~

Service Workload Namespace All = Service Workload All =

SERVICE: shipping.default.svc.cluster.local

Client Request Volume Client Success Rate (non-5xx... Client Request Duration Client TCP Bandwidth
300 ms

1.0 ops 94.7% wn Il N/A

0ns
16:04 16:06 16:08

Server Request Volume Server Success Rate (non-5x... Server Request Duration Server TCP Bandwidth
300 ms

1.0 ops 96.3% wn Il N/A

0ns
16:04 16:06

CLIENT WORKLOADS

Incoming Requests by Source And Response Code Incoming Success Rate (non-5xx responses) By Source
4 ops 100.00%

3 ops
75.00%

2 ops
50.00%
1 ops
0 ops _ - 25.00%
*:] 16:04 16:05 16:06

== stio-ingressgateway.istio-system : 200 0%
16:04 16:05 16:06 16:07

== istio-ingressgateway.istio-system : 302
® == |stio-ingressgateway.istio-system : 304 == jstio-ingressgateway.istio-system

Example:
Resilience

SWAGLAD

Resilience

*Example: data becomes outdated

*Synchronous call: What if the other system fails?
* Must be part of the domain logic

*|.e. accept order if stock unknown?

oWAG

Resilience: Timeout

*|f a call takes too long

e ...the thread will wait and block
*|f the call takes really long

e ..all thread will end up blocked

*Solution: Add a timeout to operations

oWAG

Resilience: Retry

e |f a call results in 5xx or a connect failure
*Retry!

*Solution: Add retries to operations

oWAG

Resilience: Circuit Breaker

e Circuit breaker: cut circuit if there’s a short circuit
*|dea: Avoid overload by cutting circuit

e Software Circuit Breaker:
*Limit # of waiting requests
e Exclude failed instances

oWAG

Resilience: Dapr

* Configuration for the sidecar
* Timeout

*Retry

* Circuit Breaker

oWAG

Resilience: Domain Logic

*Example: data becomes outdates

*Synchronous call: What if the other system fails?
* Must be part of the domain logic

*|.e. accept order if stock unknown?

oWAG

More Dapr Building Blocks

 Service invocation (as seen)

* State management

* Publish and subscribe

* Bindings to external sources

* Actors (stateful, long-running objects)
* Secrets management

* Configuration

* Distributed locks

* Workflow

* Cryptography

oWAG

How to Dig Deeper...

*Try the demo for yourself:
https://github.com/ewolff/microservice-dapr
Learn more about Dapr
https://docs.dapr.io/#learn-more-about-dapr

* Read Microservices Recipes / Practical Guide to
Microservices to understand technology alternatives

* Read Microservices Primer / Microservice to
understand microservices architecture

oWAG

https://github.com/ewolff/microservice-dapr
https://docs.dapr.io/#learn-more-about-dapr

	Folie 1: https://github.com/ ewolff/microservice-dapr
	Folie 2: Example
	Folie 3: Feeds
	Folie 4
	Folie 5: Subscribing to Feed
	Folie 6: HTTP Caching
	Folie 7
	Folie 8: Dapr
	Folie 9
	Folie 10: Dapr Local for Development
	Folie 11: Dapr: Alternative to Feed
	Folie 12: Dapr: Alternative to Feed
	Folie 13: Dapr: Alternative to Feed
	Folie 14: Dapr: Alternative to Postgres
	Folie 15: Dapr: Alternative to Postgres
	Folie 16: Dapr: Alternative to Postgres
	Folie 17
	Folie 18: Dapr: Service Discovery
	Folie 19: Demo: Local Dapr
	Folie 20
	Folie 21: Dapr on Kubernetes
	Folie 22
	Folie 23
	Folie 24: Demo: Dapr Deployment
	Folie 25: Dapr: Tracing
	Folie 26
	Folie 27: Dapr Monitoring
	Folie 28: Monitoring in the Dapr Example
	Folie 29
	Folie 30: Demo: Dapr Monitoring
	Folie 31
	Folie 32: Example: Resilience
	Folie 33: Resilience
	Folie 34: Resilience: Timeout
	Folie 35: Resilience: Retry
	Folie 36: Resilience: Circuit Breaker
	Folie 37: Resilience: Dapr
	Folie 38: Resilience: Domain Logic
	Folie 39: More Dapr Building Blocks
	Folie 40: How to Dig Deeper…

