Aufgabe 1 - Qualitat

Quality Scenarios

D Quality Scenario Importance

Q1 To maintain a high level of data integrity, the system must ensure that expense High
entries cannot be altered by unauthorized persons.

Q2 The system should handle up to 10,000 users concurrently without performance High
degradation.

Q3 Personal data must be encrypted in transit and at rest to protect against High
unauthorized access.

Q4 The user interface must allow users to submit expenses in no more than three Medium
clicks from the dashboard.

Q5 The system’s annual downtime should not exceed 4 hours to ensure continuous High
business operations.

Ja

Qualitatsbaum / Qualitatsziele

Utility Tree

— [Perforrnance])—([qz -Handle 10,000 concurrent users]j

[Q1 - Protect data integrlty])

[Security]

([BigSpender Utility Tree] [Q3 - Encrypt personal data])

-'. [Usability] I [Q4 - Intuitive Ul with <=3 clicks]

- [Reliability] [QS - Max 4 hours downtime annually]

Aufgabe 2 - Losungsstrategie

Solution Strategy Results

Solution Strategy

Key Constraints
« Technology Stack: Preference for Java or Groovy-based technologies, with a focus on Spring Boot or Grails.
« Deployment Environment: The system will be deployed in a cloud environment.

« Security Protocol: All connections must be secured using TLS.

Assumptions
+ Integration Points: Assumed integration with payroll, user directory, and other external systems via secure APIs.
. Based on the requi to support up to 10, users, scalable architecture is assumed t
a priority.

« Modulith Architecture: The system will adopt a modular monolith (modulith) approach, aligning with the quality
requirements.

Basic Principles

« Modularity: The system will be designed with clear module boundaries, promoting maintainability and ease of fut

scaling or modifications.
" « Security: Adhering to the principle of secure by design, security will be integrated into the architecture from the
outset, particularly focusing on data protection and compliance with German law.

. and ility: Ensuring i and stability under high user load.

« Usability: Focused on providing an intuitive user experience, with simplicity in navigation and interaction.

Formal
fein

Inhaltlich
akzeptabel

Aufgabe 3 - technisches
Kontextdiagramm

Squanderer Approver Business Admin Auditor

Administrator for busin

Integrates via Authenticates via Accesses Integrates via Receives data via
[HTTPS REST API] [LDAP over TLS] |[WebDAV over HTTPS] [SOAP over HTTPS] [HTTPS REST API]

Payroll System User Directory Document Archive In-tray System

Invoices System

Manages employee Manages user Stores receipts and
payments authentication documents

Manages incoming
receipts/documents

Manages invoicing

Legend

external system
external container

Formal fein:
Grafik und
Beschreibung
vorhannden

Aufgabe 4 - fachliche
Strukturierung

e You

Let's break our system down to components. Develop and visualize a rough business structuring @
of the BigSpender system. Use plantUML to do so. Display all external components from sub-task
3 (actors and external systems) in the diagram.

<2/2

Receipt Scanner

uses

BigSpender Sy.
Isys

ng Module

orts

Payroll System User Directory Document Archive R G

Manages employee Manages user Stores receipts and R
payments authentication me: Manages invoicing

Formal: Kontext

und Aufteilung

vermischt - das
war aber so
vorgegeben.

Das System soll
Reisekosten
verarbeiten. Das ist in
einem Modul
implementiert. Ist das
eine ausreichende
Aufteilung?

Teilaufgabe 5: Technologie-Entscheidungen

User Interaction: Submitting an Expense Claim

The interaction chosen to demonstrate the technology stack and its alignment with quality goals is "Submitting an
Expense Claim."
Technology Stack Overview

* Programming Language: Java with Spring Boot

* Operating System: Linux

* Database Technologies: PostgreSQL and Redis

« Communication Mechanisms: RESTful APIs, HTTPS, and TLS
* Front-End Technologies: React and Bootstrap

¢ Cloud Infrastructure: AWS

* DevOps Tools: Docker and Jenkins

* Security: Spring Security, OAuth 2.0, JWT

o Maonitarine and T.nogine® FI.K Stack

Formal
fein

React /
Bootstrap

Java /
Spring
Boot

Redis /
PostgreSQL

REST,
HTTPS,
TLS

Spring
Security,
OAuth 2.0,
JWT

Teilaufgabe 5: Schritt-fur-Schritt-Darstellung
einer Interaktion

Workflow of Submitting an Expense Claim

|
1

‘What Happens

User logs in to submit an expense

User inputs expense details

Expense data submitted to server

Data validated and processed

Data stored in PostgreSQL

Cache updated in Redis

Confirmation sent to user

Notification sent to Approver

Data available for auditing

System Parts

React Front-End, Spring Security,
User Directory (LDAP over TLS)

React Front-End, Bootstrap
Spring Boot Application, RESTful
API over HTTPS

Spring Boot Application, Business
Logic Layer

PostgreSQL Database, Transaction
Management

Redis
Spring Boot Application, React
Front-End

Spring Boot Application, RabbitMQ

Reporting Module, ELK Stack

C ibution to Quality Goals

Ensures secure access (Security), User-friendly
UI (Usability)

Provides an intuitive interface, ensuring data
accuracy (Usability)

Secure transmission of data (Security), Efficient
processing (Performance)

Ensures data integrity and compliance with
business rules (Data Integrity)

Maintains data integrity and consistency (Data
Integrity), Reliable data storage (Reliability)

Enhances retrieval speed for frequently accessed
data (Performance)

Provides immediate feedback to user (Usability),
Ensures system responsiveness (Performance)

Decouples message delivery (Reliability),
Asynchronous communication (Performance)

Facilitates audit processes (Compliance),
Effective logging (Reliability)

This workflow demonstrates the "concert of system parts” used to ensure the quality goals. The technology stack has been
selected and configured to address the identified quality goals of Security, Usability, Performance, Data Integrity, and

Reliability, as defined in subtask 1.

Formal fein,

schon
Ubersichtlich

Teilaufgabe 6 - Bewertung

Top 5 Riskiest and Most Important Quality Scenarios

1. Data Integrity and Compliance (Q1)
© Rationale: Essential for legal compliance and integrity of financial data. Any breach could lead to legal issues and

loss of trust.

B Decision: ing st and audit trails within the system. Using Spring Security
for robust authentication and authorization, ensuring that only authorized users can modify data.

© Trade-offs: This may slightly but is necessar i i d dat
integrity.

2. System Performance and Scalability (Q2)
© Rationale: Critical for user experience and system reliability, especially during peak times.

o Decision: Using a cloud-based for scalabil ing caching
‘with Redis to enhance performance.

 Trade-offs: Additional cost for cloud infrastructure and complexity in cache management, but essential for
maintaining performance.

3. Security of Personal Data (Q3)

© Rationale: Data have severe legal and

© Architectural Decision: Encryption of data in transit and at rest, using HTTPS and TLS for secure communication.
Implementation of OAuth 2.0 and JWT for secure handling of authentication and authorization tokens.

© Trade-offs: Th ity measures may add latency ystem, but they are ible for ensuring data
security.

4.System Reliability and Availability (Q5)

© Rationale: System downti disrupt busi i \pany i

© Architectural Decision: Adopting a microservices architecture for fault isolation, using Docker and Jenkins for
consistent deployment, and AWS for high availability.

© Trade-offs: This approach requires more effort in monitoring and management but is crucial for high availability.

5. Usability (Q4)

© Rationale: Essential for user adoption and ivity. Poor usability can lead to i

© Architectural Decision: Using React and Bootstrap for creating an intuitive and responsive user interface, ensuring
ease of use.

© Trade-offs: May require more effortfora iendly design, but it i critical for user
satisfaction and system adoption.

‘These scenarios have been selected based on their ial impact on i i legal
compliance, user satisfaction, and the business's reputation. The architectural decisions made in each case are aimed at
‘mitigating the risks associated with these scenarios, ensuring the system is robust, compliant, and user-friendly.

Fazit

